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Why Fortran 90?

Motivation

❍ Ambitious parallel scientific computations impose new
demands on software development

Approach

❍ Study of object-oriented concepts and their application
to scientific computing with Fortran 90

Significance

❍ Modernizes scientific programming without sacrificing
performance
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Parallel Computing

Importance

❍ Supports solution of very large
problems, leading to better sci-
ence

Issues

❍ Requires sophisticated program-
ming to achieve high perfor-
mance

❍ Represents the best alternative
to make significant new advances in many fields of sci-
ence and engineering
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The Numerical Tokamak Turbulence Project

Participating Institutions

LLNL, LANL, UCLA, PPPL, NERSC, ORNL, UTA, GA, UColorado

Tokamak Definition

Torodial fusion energy device using magnetic confinement

Physics & Computational Goal

Model transport of particles & energy in
tokamaks

Demonstrate MPP usability

Competing Approaches

Gyrofluid: Enhanced MHD
Gyrokinetic: Reduced PIC



Earth and Space Sciences Project
(625-20)

The Computation Cycle

❍ Initialize particle positions

❍ Interpolate charge density to grid

❍ Calculate electric field

❍ Apply force on particles from known E field

❍ Update particle positions from field

X
 V

e
lo

c
ity

X Position

Electron Phase Space at T = 0, T = 148

1D Grid with
Neutralizing
Ion Charge

Beam Electrons

Background Electrons

0 20 40 60 80 100 120

0

10

5

-5

Beam-Plasma Instability Experiment Which
Drives Plasma Waves To Saturation

X
 V

e
lo

c
ity

0

10

5

-5

Particle
Trapping &
Vortex For-
mation

Particle Push

td

dvi qi

mi
----- E xi( )( )=

xi t ∆t+( ) xi t( ) vi t
∆t
2
-----+ 

  ∆t+=

vi t
∆t
2
-----+ 

  vi t
∆t
2
-----– 

  Fi t( )
mi

------------∆t+=

dxi

dt
-------- vi=

q x( ) qi S x x– i( )•
i

∑=

Charge Deposition Field Solve

Φ∇2– 4Πq x( )=

E x( ) Φ∇–=



Earth and Space Sciences Project
(625-20)

Plasma PIC Algorithm Particle/Field Interaction in 2-dim

SPMD Data Parallel Model with Explicit Message Passing

Particle Advance (Push) from Force Array

Field Force
Grid Cells

X Force Component
Y Force Component

Charge Deposition to Charge Density Array

Partition

Partition

Field Charge
Grid Cells

Field and particle parti-
tioning may differ based
on load balancing
requirements...

Guard Region
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Object-Oriented Programming Concepts in a Nutshell

CLASSES

❍ Contain user-defined types and the procedures that work on them

USER-DEFINED TYPES
❍ Allow one to combine into a single structure related data which can be

passed together to procedures. Internal details of the structure can be
changed without impacting the clients (users)

INHERITANCE

❍ Allows a family of similar types to share common code. The family has a
special data relationship, where the child adds features to the parent

RUN-TIME POLYMORPHISM

❍ Allows one to write code for a family of types, where the action taken varies
dynamically (at run time) based on the type
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Fortran 90 Features Modernize Programming

Fortran 90 is a subset of High Performance Fortran, and
is backward compatible with Fortran 77

Generic InterfacesModules
Encapsulate data and routines
across program units.

A single call can act differently
based on the parameters.

Use AssociationDervied Types
Allow user-defined types to be cre-
ated.

Supports module interaction.

Pointers/Allocatable ArraysArray Syntax
Simplifies operations on whole
arrays, or array components.

Support the use of dynamic data
structures.
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PIC Example of Fortran 90 Object-Oriented Concepts

Many arguments to describe features (Fortran 77)

Combine into logically related units (Fortran 90)

dimension part(idimp,npmax), q(nx,ny,nzpmx)

dimension fx(nx,ny,nzpmx),fy(nx,ny,nzpmx),fz(nx,ny,nzpmx)

data qme, dt /-1.,.2/

call push(part,fx,fy,fz,npp,qme,dt,wke,nx,ny,npmax,nzpmx)

call dpost(part,q,npp,noff,qme,nx,ny,npmax,nzpmx)

use partition_module; use plasma_module

type (species) :: electrons

type (sfield) :: charge_density

type (vfield) :: efield

type (slabs) :: edges

real :: dt = .2

call plasma_push(electrons, efield, edges, dt)

call plasma_dpost(electrons, charge_density, edges)
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Organizing Codes Using Object-Oriented Techniques

❍ Relationships among data organize the code, rather
than relationships among procedures

❍ Programming consists of iteratively:

❏ “Finding” the objects

❏ Understanding and building relationships among objects

❍ Many kinds of relationships can exist...

❏ Links represent connections between classes

❏ An aggregration is an object assembled from com-
ponent objects

❏ Inheritance represents a family of related abstract
data types with similar properties

Distribution Class

number of particles in x, y,z
thermal velocity in x, y,z
drift velocity in x, y,z
spatial density in x, y,z

Create Distribution

Species Class

total # of particles on Proc.
total # of particles in species
charge, charge/mass of species
kinetic energy of species
collection of species particles

Create/Destroy Species
Distribute Species
Set Kinetic Energy

serves
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Fortran 90 Modules Provide Abstraction Features
MODULE species_class
USE distribution_class; USE slab_partition_class
IMPLICIT NONE
TYPE particle ! derived type...

PRIVATE
real :: x,y,z,vx,vy,vz

END TYPE particle
TYPE species ! derived type...

real :: qm,qbm,ek
integer :: nop,npp
TYPE (particle),dimension(:),pointer::p

END TYPE species
CONTAINS
SUBROUTINE spec_dist(this,edges,distf) ! member fcn...

TYPE (species), intent(out) :: this ! the object...
TYPE (slab), intent(in) :: edges
TYPE (distfcn), intent(in) :: distf
! code omitted...

END SUBROUTINE spec_dist ! additional member functions...
END MODULE species_class
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“Sketch” Of Object-Oriented Fortran 90 PIC Code
PROGRAM beps3k

use partition_class; use plasma_class

type (distf) :: backdf, beamdf ! declare all objects...

call MPI_INIT(ierror)

call species_init(electrons, qme, qbme, np) ! initialize

call fields_init(cdensity, nx, ny, nz) ! objects...

call fields_init(efield, nx, ny, nz)

DO itime = 1,500

call fields_solve(cdensity, efield)

call plasma_getpe(energ, efield)

call plasma_push(electrons, efield, edges, dt)

call plasma_pmove(electrons, edges)

call plasma_dpost(electrons, cdensity, edges)

END DO

call fields_destroy(efield) ; call fields_destroy(cdensity)

call species_destroy(electrons) ! destroy dynamic objects

call MPI_FINALIZE(ierror)

END PROGRAM beps3k
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Object-Oriented Fortran 90 Parallel PIC Model

Energy Module

potential energy
kinetic energy
total energy

Total Energy

Plasma Module

Advance
ChargeDeposition
UpdateDistribution
Set Kinetic Energy
Set Potential Energy

Distribution Module

number of particles in x, y,z
thermal velocity in x, y,z
drift velocity in x, y,z
spatial density in x, y,z

Create Distribution

Fields Module

complex/transpose charge field
complex/transpose electric field

Create/Destroy Fields
Update Partitioned Field Borders
Solve Fields

ComplexFields Module

field energy
complex field
field geometry
particle halfwidth x, y, z

Create/Destroy Field
Poisson Solve
FFT
Transpose Field

MPI Module

number of processors
processor id
processor type

Timer
Initialize

Species Module

total # of particles on Proc.
total # of particles in species
charge, charge/mass of species
kinetic energy of species
collection of species particles

Create/Destroy Species
Distribute Species
Set Kinetic Energy

VectorFields Module

field energy
vector field
field geometry

Create/Destroy Field
Read Field Energy

ScalarFields Module

field energy
real scalar field
field geometry

Create/Destroy Field
Set/Add to Field

SlabPartitioning Module

left/right borders
region size

Uniform Partitioning

describes

serves

contained by

serves

serves informs

contained by contained by

OO techniques capture essential
abstractions (particles, fields,
relationships). This enhances
collaborations and promotes

safer software design.
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Ion-Electron expansion from laser-
fusion experiment.

3D Free-expansion and Gravitational Experiments

Partitioning from dynamic load bal-
ancing in gravitational problem.
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“Sketch” Of Object-Oriented C++ PIC Code
void main() {

VPMachine vpm; ! declare and init objects...

DistFunction backdf, beamdf;

Species< Particle3D > electrons;

ScalarField3D< float > cdensity( nx, ny, nz, vpm );

VectorField3D< float > efield( nx, ny, nz, vpm );

Plasma plasma;

Fields3D fields( inx, iny, inz, vpm );

for ( int i=0; i < N_STEPS; i++ ) {

fields.Solve(cdensity, efield, vpm);

plasma.getpe(efield, energy);

plasma.push(electrons, efield, dt);

plasma.pmove(electrons, vpm);

plasma.dpost(electrons, cdensity);

}

vpm.ParFinal();

} // End Main...
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IBM F77, IBM F90, and KAI C++ Parallel Performance
Comparison on CTC IBM SP2 with MPI

Object-Oriented approaches applied to Fortran 90 outperform Fortran 77 and C++ in
this application. (Results in yellow use P2SC Super Chip hardware optimizations.)

KAI C++ Compilation (2hours) IBM F90 Compilation (5 minutes)
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Combine Existing Modules in a more Powerful Way
with a Polymorphic Interface

Polymorphic Interface

Main Code

1D lib 2D lib 3D lib1D lib 2D lib 3D lib

1D Main 2D Main 3D Main

Originally, three versions of main code

plasma 1d
module

plasma 2d
module

plasma 3d
module

plasma 1d
module

plasma 2d
module

plasma 3d
module

Now, one polymorphic version
of main code

beps12k.f90

runtime_polymorphism.f90
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Fortran 90 Supports Abstract Data Types

❍ Simplifies program interfaces and
hides implementation details

❍ Helps build codes from modular
pieces written by different authors

❏ Enhances software collaboration

❏ Increases program safety

❏ Older codes are safer and easier to use

❏ Allows code changes without impacting users

❏ Encapsulates old codes, advancing them to new standards

❏ Program can be expressed in a more natural way

PROGRAM p_amr

USE mpi_module

USE mesh_module

type (mesh) :: pmesh

call create(pmesh,’file’)

call partition(pmesh)

call refinement(pmesh)

call migration(pmesh)

call visualize(pmesh)

END PROGRAM p_amr
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Complex Data Structures Are Now Possible

❍ Makes more realistic, complex, & dynamic simulations
more routine (AMR, Multigrid, Plasma Modeling, ...)

Beam-Plasma Instability Experiment

Adaptive Mesh Refinement

Multigrid Numerical Solvers

Level 0

Level 1

Level 2
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Data Structures and AMR Relationships

Fortran 90 Structures (NASA JPL)

OO Approach : Use OO aspects of Fortran 90 to
organize mesh structure

module mesh_module ! abstract of module...

use mpi_module ; use heapsort_module ; private

public :: jpl_mesh_repartition, ...

type mesh

type(node), dimension(:), pointer :: nodes

type(edge), dimension(:), pointer :: edges

type(element), dimension(:), pointer :: elements

type(b_element), dimension(:), pointer :: bndy_elements

end type mesh

contains

! module member routines...

end module mesh_module
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Data Structures and AMR Relationships

Fortran 90 Structures (NASA JPL)

Using Abstractions: Initialization Section

program pamr

use mesh_module

implicit none

! statments omitted...

type(mesh) :: in_mesh, parent_mesh

call MPI_INIT(ierror)

call jpl_mesh_create_incore(in_mesh, in_file)

call jpl_mesh_repartition(in_mesh)

! adaptive refinement loop...

call jpl_mesh_visualize(in_mesh, “visfile.plt”)

call MPI_FINALIZE(ierror)

end program pamr
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Data Structures and AMR Relationships

Fortran 90 Structures (NASA JPL)

Using Abstractions: Loop Section

❍ Error estimation is not part of the library.

program pamr

! adaptive refinement loop...

do i = 1, refine_level

call jpl_mesh_error_est(in_mesh, parent_mesh)

call jpl_mesh_logical_amr(in_mesh)

call jpl_mesh_repartition(in_mesh)

call jpl_mesh_physical_amr(in_mesh)

end do

end program pamr



Earth and Space Sciences Project
(625-20)



Earth and Space Sciences Project
(625-20)

Some Features Approved for Fortran 2000

Firm Requirements (developed by J3)

❍ Derived Type I/O, Procedure Pointers, Internationaliza-
tion, Interoperability with C,...

❍ OO Features: Inheritance, Polymorphism, Parameter-
ized Derived Types, Constructors/Destructors

Minor Technical Enhancements (optional, time permitting)

❍ Increased Statement Length, Intent for Pointer Argu-
ments, Command Line Arguments and Variables, Vola-
tile Attribute,...

Minor Technical Enhancements (lowest priority)

❍ Public and Private derived type components,...



Earth and Space Sciences Project
(625-20)

Conclusions

Fortran 90 is useful for complex, scientific parallel programming

❍ Safer and faster development than C++

❍ Inheritance/Polymorphism is not supported, but can be
emulated (included in Fortran 2000)

❍ Performance is equalvalent, or exceeds, Fortran 77/C++

❍ Separation of inheritance and polymorphism is impor-
tant when codes have similar interfaces, but algorithms
are not related

❍ Inheritance, rarely used, typically appeared in the non-
scientific code sections
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